3 research outputs found

    A Simple Recursive Tree Oblivious RAM

    Get PDF
    Oblivious RAM (ORAM) has received increasing attention in the past few years. The goal of oblivious RAM is to enable a client, that can locally store only a small (preferably constant) amount of data, to store remotely N data items, and access them while hiding the identities of the items that are being accessed. Most of the earlier ORAM constructions were based on the hierarchical data structure of Goldreich and Ostrovsky. Shi et al. introduced a binary tree ORAM, which is simpler and more efficient than the classical hierarchical ORAM. Gentry et al. have improved the scheme. In this work, we improve these two constructions. Our scheme asymptotically outperforms all previous tree based ORAM schemes that have constant client memory, with an overhead of O(log^{2+eps}(N) * log^2(log(N))) per operation for a O(N) storage server. Although the best known asymptotic result for ORAM is due to the hierarchical structure of Kushilevitz et al. (O(log^2(N)/log(log(N)))), tree based ORAM constructions are much simple

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    Analysis of the Linux Random Number Generator

    Get PDF
    Linux is the most popular open source project. The Linux random number generator is part of the kernel of all Linux distributions and is based on generating randomness from entropy of operating system events. The output of this generator is used for almost every security protocol, including TLS/SSL key generation, choosing TCP sequence numbers, and file system and email encryption. Although the generator is part of an open source project, its source code (about 2500 lines of code) is poorly documented, and patched with hundreds of code patches
    corecore